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part I

introduction and motivation



interconnected world

• networks model objects and their relations

• many different network types

– social

– informational

– technological

– biological

– . . .
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Figure 2: Discovered strong edges of 5 ego-networks of KDD innovation award winners. The �rst 5 �gures contain
only strong edges: the colored edges and vertices show 5 topics that were used as input: cluster, classif, pattern,
network, distribut. The last topic consisted of 2 connected components which we used as two separated communities.
The last �gure shows strong and weak edges. Some of the vertices do no belong to any of the communities. Some
edges are strong despite not belonging to any of the communities because we keep edges that do not induce violations.
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impact of network science

• online communication networks and
social media
• implications in

– knowledge creation

– information sharing

– education

– democracy

– society as a whole

O. Kostakis et al.
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Fig. 9 Linear layouts of 5 summaries discovered for the Twitter World Cup dataset, for k = 38 and h = 2.
The plotted graphs contain only those vertices with degree greater or equal to the 50th largest degree value
of each graph. Blue edges are unique to a summary, red edges occur in each summary, and the remaining
edges are colored green (Color figure online)

notice that the hashtags in the sumamries form communities. For example, those for
football (soccer) are separated from those of American football. Similarly, there is a
cluster of hashtags relating to music bands, that also happens to re-appear.
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research questions in network science

• structure discovery

– communities, summarization, events, role mining

• study complex dynamic phenomena

– evolution, information diffusion, opinion formation,
– structural prediction

• develop novel applications

• design efficient algorithms



traditional view

• networks represented as pure graph-theory objects

– no additional vertex / edge information

• emphasis on static networks

• dynamic settings model structural changes

– vertex / edge additions / deletions



temporal networks

• ability to collect and store large volumes of network data

• available data have fine granularity

• lots of additional information associated to vertices/edges

• network topology is relatively stable, while lots of activity
and interaction is taking place

• giving rise to new concepts, new problems, and new
computational challenges



modeling activity in networks

1. network nodes perform actions (e.g., posting messages)
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many novel and interesting concepts
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temporal networks — objectives

• identify new concepts and new problems

• develop algorithmic solutions

• demonstrate relevance to real-world applications



terminology

• we use term “temporal networks”, but terminology is not
standardized
• term “X Y” can be encountered in the literature,where

X :
– temporal
– dynamic
– (time-)evolving
– time-varying
– time-dependent
– evolutionary

Y :
– networks
– graphs

• some combinations have distinct meaning, but not always



examples of temporal networks

[Holme, 2015]

• human communication networks

– phone, email, text messages, etc.

• human proximity networks

– recorded by various sensors and devices

– bluetooth, wifi, etc.

– patient-referral networks, i.e. how patients are
– transferred between wards of a hospital system

– sexual contact networks

• animal proximity networks

– obtained via RFID devices

– lifestock or wildlife



examples of temporal networks — cnt’d

[Holme, 2015]

• bibliographic networks

– collaboration and citation networks

• economic networks

– credit card transactions

– trade networks of countries

– bitcoin transcations

• travel and transportation networks

– airline connections, bus transport, bike-sharing
– systems



examples of temporal networks — cnt’d

[Holme, 2015]

• brain networks

– temporal correlations of the oxygen levels of brain
– regions as measured by fMRI scanning

• biological networks

– genes involved in different interactions that change
– over time

– current challenges, as, one cannot measure precisely
– when two proteins interact with each other, but
– technology is improving
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part II

models of temporal networks



representation of temporal networks

1. sequence of interactions

• a temporal network is represented as G = (V ,E)

– with set of nodes V , and

– set of edges E = {(u, v , t)}, with u, v ∈ V and t ∈ R
– if interactions have duration, then E = {(u, v , t , δ)}

• this is a lossless representation — no information is lost

• also known as sequence of contacts, or sequence of
(temporal) edges



representation of temporal networks

1. sequence of interactions

• visual representation of a temporal network as a sequence
of interactions

a
b
c
d
e

1 2 3 4 5 6 7

time



representation of temporal networks

2. sequence of static graphs

• sequence G1, , . . . ,GT

– where Gt = (Vt ,Et), with t = 1, . . . ,T

– typically assume that nodes are fixed, i.e., Vt = V

– Et are the edges that occur in time interval t

• advantages: static graph analysis methods can be applied

• disadvantages: the representation assumes quantization
into time intervals

– thus, representation depends on quantization
– parameters, e.g., seconds, minutes, hours, days, etc.

– coarse resolution may lead to information loss

– fine resolution may lead to sparse (or even empty)
– static graphs



representation of temporal networks

2. sequence of static graphs

• visual representation of a temporal network as a sequence
of static graphs

G1 G2 G3



representation of temporal networks

3. time series of contacts

– a time-series for each pair of nodes in the network

– equivalent representation with sequence of interactions

4. tensor representation

– tensor representing node×node× time information

– can apply powerful tensor-algebra techniques

– a complication is that time is directed, while tensor algebra
assumes that indices can be relabeled (breaking the time
ordering)



representation of temporal networks

[Casteigts et al., 2012]

5. time-varying graphs defined as G = (V ,E ,T ,p, λ),
where

– V : set of nodes

– E ⊆ V × V : set of edges

– T : a time domain

– p : E × T → {0,1} : a presence function

– λ : E × T → R : a latency function

• general definition that can be used to model graph
datasets in different applications

– transportation networks, communication networks,
– social networks



representation of temporal networks

6. stream graphs and link streams [Latapy et al., 2018]

• a formalization for modeling interactions over time
• a stream graph is defined as G = (T ,V ,W ,E), where

– T : a time domain

– V : a set of nodes

– W ⊆ T × V : a set of temporal nodes

– E ⊆ T × V × V : a set of links

– s.t., (t ,u, v) ∈ E implies (t ,u) ∈W and (t , v) ∈W
• formalization is self-consistent : relations between

concepts are preserved

– e.g., can define clustering coefficient using density
• formalization generalizes usual concepts of graph theory

– e.g., line graphs, k-cores, cliques, density, centralities



temporal networks vs. dynamic graphs

• dynamic graphs is a standard model typically studied in
theoretical computer science

– e.g., [Henzinger et al., 1999, Thorup, 2000]

• dynamic graphs are represented as a sequence of
edge additions and/or edge deletions

• G0 is the initial graph, and Gi is the graph resulting after
the i-th edge addition/deletion operation

• objective: efficient maintenance of graph properties

– e.g., connectivity, shortest paths, spanners, etc.



temporal networks vs. dynamic graphs
• in dynamic-graph studies, the properties of interest refer

to individual graph snapshots Gi , not considering the
whole graph evolution

• emphasis on computational efficiency

– computation time per operation

– e.g., cost of maintaining a minimum spanning tree
– per edge additions/deletions

– or, cost of maintaining a data structure that allows to
– answer short-path queries

• dynamic graph model captures topological changes, not
interactions

– e.g., dynamic graphs can be used to model friendship
– additions/deletions in a social network, but not
– discussions or other interactions



temporal networks vs. dynamic graphs

• dynamic graphs resemble sequence of interactions model

• main difference lies on which graph properties we study

• for dynamic graphs we typically consider properties on
graph snapshots

– i.e., minimum spanning tree on the current snapshot

• for temporal graphs we typically consider properties that
span a time interval

– i.e., a temporal pattern

• disclaimer: in this tutorial we do not consider dynamic
graphs

– however, it is a well-developed area with rich literature



dynamic networks

• in the context of graph generation models, we consider
dynamic networks

– e.g., Barabási-Albert, forest-fire, copying model, etc.

• similar to dynamic graphs, as data are seen as a sequence
of node/edge additions (typically no deletions)

• node/edge addition are governed by a probabilistic model,
not arbitrary, or worst case, as in algorithmic models

• emphasis again on network topology, i.e., how certain
network structures emerge

– e.g., scale-free distribution, small world, etc.

• disclaimer: in this tutorial we do not consider dynamic
networks



graph streams

• setting inspired by data streams
[Muthukrishnan et al., 2005]

• recall the data-stream model:

– data are presented as a sequence of data items
– (potentially infinite)

– assume a small number of passes
– typically constant or just one pass

– assume small memory compared to data size
– e.g., poly-logarithmic

– assume fast computation per data item processed
– e.g., constant or poly-logarithmic



graph streams

• a graph stream is a graph dataset in the data-stream model

e.g., sequence of interactions (temporal network), or
sequence of edge additions/deletions (dynamic graph)

• thus, a graph stream is not a representation model, instead
it refers to the underlying computational model

• thus, we can study questions of mining temporal networks
in the graph-stream model



dynamic graph algorithms on streaming model

• well-studied model

• extensive survey [McGregor, 2014]

• different settings considered

– node/edge additions (incremental)

– node/edge additions/deletions (fully-dynamic)

– updating weights/labels is a special case of the
– fully-dynamic model

– sliding-window setting: consider only edges from
– latest interval of fixed length

– algorithms can be deterministic or randomized



time-respecting paths

• a fundamental concept in analysis of temporal networks

– used in studies of information propagation, or
– epidemics spreading

• a time-respecting path is a sequence of temporal edges,
such that

– consecutive edges share a common node, and

– time stamps of temporal edges are non-decreasing

• intuitively, a piece of information (or disease) can
propagate in the network only over time-respecting paths



time-respecting paths — example

a
b
c
d
e

1 2 3 4 5 6 7

time

(c,e,2), (e,d ,5), (d ,b,6) is a time-respecting path from e to b

(c,b,3), (b,a,1) is not a time-respecting path



static expansion of a temporal network

• a transformation of a temporal network to a directed (static)
network so that time-respecting paths in the temporal
network correspond to directed (static) paths in the
directed (static) network

• how to create such a transformation?

1. create a copy of each node for each time instance

2. create a directed edge from the (t − 1)-th copy of u to
the t-th copy of u, for all nodes u, and all time instances t

3. create directed edges for the temporal edges



static expansion of a temporal network

example

a
b
c
d
e

1 2 3 4 5 6 7

time

(a) representation of a temporal
network
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(b) static expansion of temporal
network



static expansion of a temporal network

example
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(a) representation of a temporal
network

a
b
c
d
e

time

(b) static expansion of temporal
network; directed edges



static expansion of a temporal network

example

a
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time

(a) representation of a temporal
network
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time

(b) static expansion of temporal
network; delays



reachability, connectivity, and connected
components

• defined as in static graphs, but using time-respecting paths
• reachability :

– used to study infection spreading and information
– cascades

• connectivity : as in directed (static) graphs is not symmetric

– distinguish strong and weak connectivity

– in addition, we can define transitive connectivity:
– a subgraph is transitively connected if time-respecting
– paths from u to v and v to w imply a time-respecting
– path from u to w



minimum temporal paths

different notions of minimum temporal paths rely on
time-respecting paths

• earliest-arrival path : a path from x to y with earliest arrival
time

• latest-departure path : a path from x to y with latest
departure time

• fastest path : path from x to y with minimum elapsed time

• shortest path : fastest path from x to y in terms of overall
traversal time required on edges

[Wu et al., 2014]



diameter, network efficiency

• diameter : shortest latency of time-respecting paths over
connected pairs [Chaintreau et al., 2007]

– restricted on connected pairs, as real data have many
– disconnected pairs

• network efficiency : the harmonic mean of latency over all
pairs [Tang et al., 2009]

– discussion : what is the motivation for harmonic mean?

– it combines average latency and reachability ratio



diameter, network efficiency

• diameter : shortest latency of time-respecting paths over
connected pairs [Chaintreau et al., 2007]

– restricted on connected pairs, as real data have many
– disconnected pairs

• network efficiency : the harmonic mean of latency over all
pairs [Tang et al., 2009]

– discussion : what is the motivation for harmonic mean?

– it combines average latency and reachability ratio



centrality measures

• many centrality measures on static graphs use distances
• closeness centrality : Cc(u) = n−1∑

v 6=u d(u,v)

• betweenness centrality : Cb(u) =
∑

v 6=u 6=w pu(v ,w)∑
v 6=u 6=w p(v ,w)

• for temporal networks we replace distance with shortest
latency time-respecting path
• analogues of Katz centrality and PageRank have also been

defined
• discussion : how do these centrality measures on temporal

networks compare with their static analogues?



temporal motifs

• temporal motif counting

[Paranjape et al., 2017, Kovanen et al., 2013]:

– temporal motif is a small subgraph with temporally
– ordered edges (and/or interval or delay constraints)



temporal motifs

δ-temporal motif: a sequence of directed temporally ordered
edges which appear within a time window δ

[Paranjape et al., 2017]
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part IV

algorithmic frameworks for temporal network
analysis



frameworks

adopted traditional frameworks

• static expansion graphs

• dynamic graphs

• time-series

• labeled graphs



static expansion graphs

• static graph of time-stamped nodes and time-forwarding
edges Ge = (Ve,Ee)

• Ve = {(v , t) | v ∈ V , t ∈ T}, where T is the set of all
possible timestamps
• edges Ee : interactions between the temporal nodes Vt

a

b
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d

t1 42 65 118 12
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(b,1)

(c,1)

(d,1)
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(b,2)
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(b,13)

(c,13)

(d,13)



static expansion graphs

• static expansion graph is a directed acyclic graph (DAG)

• standard graph algorithms (BFS, DFS, Dijkstra,
Bellman-Ford) can be adopted for finding:

– fastest temporal paths,
– shortest temporal paths, and
– weighted combinations

– journeys and walks

• upstream, downstream reachability sets



time-respecting paths

• some paths in the static graph are not meaningful in the
temporal graph
• e.g., a – b – g – j is not time-respecting path
• what is the shortest path from a to `?

[Wu et al., 2014]



minimum temporal paths

different notions of minimum temporal paths rely on
time-respecting paths

• earliest-arrival path : a path from x to y with earliest arrival
time

• latest-departure path : a path from x to y with latest
departure time

• fastest path : path from x to y with minimum elapsed time

• shortest path : fastest path from x to y in terms of overall
traversal time required on edges

[Wu et al., 2014]



earliest-arrival path

• temporal graph G = (V ,E)

• source vertex x , starting time ts

• array T of size |T | to record arrival times to each node
• T [x ] = ts and T [v ] =∞, for nodes other than source

• process edges (u, v , t , λ) in temporal order

– if t ≥ T [u] (u is already reached from x)

– check if current edge creates earliest path from x to v

– if yes, update T [v ] = min (T [v ], t + λ)

[Wu et al., 2014]



latest-departure path

• temporal graph G = (V ,E)

• sink vertex x , ending time ts

• same process as for earliest-arrival path, but
• process edges in reversed temporal order
• add new interaction to the path if it does not violate

temporal order

[Wu et al., 2014]



dominating path

• source vertex x and sink v
• define (a[v ], s[v ]), where

– a[v ] : time of arrival to v

– s[v ] : time of departure from x
• consider another path (a′[v ], s′[v ])
• if (s′[v ] > s[v ]& a′[v ] ≤ a[v ]) or (s′[v ] = s[v ]& a′[v ] < a[v ])

– then path (a′[v ], s′[v ]) dominates path (a[v ], s[v ])
• if there is a path (u1,u2) in interval [ts, te] with duration d ,

which includes (a[v ], s[v ]),

– then there is path (u1,u2) in [ts, te], which is not slower
– and includes (a′[v ], s′[v ])

[Wu et al., 2014]



fastest path
• source vertex x , list Lv to keep track on path candidates
• define (a[v ], s[v ]), where

– a[v ] : time of arrival to v
– s[v ] : time of departure from x

• array T to record fastest-path duration for each node
– T [x ] = 0 and T [v ] =∞, for nodes other than source

• process edges (u, v , t , λ) in temporal order
– if u = x , insert (t , t) into Lx

– take (a′[u], s′[u]) from Lu with the latest arrival
– time a′[u], so that a′[u] is before t
– this means we found a new path:

– a[v ] = t + λ and s[v ] = s′[u]
– insert this path into Lv

– remove all dominated paths from Lv

– update T [v ] if this new path is faster than seen so far

[Wu et al., 2014]



shortest path

• similar to algorithm for fastest path
• but keep track on the number of interactions, instead of the

duration

[Wu et al., 2014]



minimum spanning trees

• MSTa : minimum spanning tree with earliest-arrival times

each temporal path from the root to the node is the earliest
arrival path
• MSTw : minimum spanning tree with smallest total weight

or with the smallest number of hops: directed Steiner tree.

[Huang et al., 2015]



applications of temporal paths

• temporal reachability problems

– diffusion simulation, centrality measures

• directed spanning or Steiner trees

– reconstruction of diffusion

• drawback: large size of expansion graph may lead to high
computational complexity and large memory consumption

• challenge: scalable algorithms and approximations



applications — transportation temporal networks

[Kujala et al., 2018]



Pareto-optimal journeys

[Kujala et al., 2018]



Boarding-count-augmented temporal-distance
profiles

[Kujala et al., 2018]



dynamic graph algorithms on streaming model

• well-studied model

• extensive survey [McGregor, 2014]

• different settings considered

– node/edge additions (incremental)

– node/edge additions/deletions (fully-dynamic)

– updating weights/labels is a special case of the
– fully-dynamic model

– sliding-window setting: consider only edges from
– latest interval of fixed length

– algorithms can be deterministic or randomized



dynamic graph algorithms on streaming model

[McGregor, 2014]



sliding-window neighborhood profiles

• temporal network G = (V ,E)

• stream of edges E = 〈(u1, v1, t1), (u2, v2, t2), . . .〉
with t1 ≤ t2 ≤ . . .
• sliding window length w

• snapshot network G(t ,w) at time t contains all edges

with time-stamps in (t − w , t ]

problem :

given node u, window length w , and distance r , how many

nodes in G(t ,w) are within distance r from u at time t?

[Kumar et al., 2015]



proposed online algorithms

1. an exact but memory-inefficient streaming algorithm

2. an approximate memory-efficient streaming algorithm

– approximate algorithm uses logic of exact algorithm,

combined with hyperloglog sketches

– if number of buckets in the HLL counter is k then the

worst case complexity changes to

– update time :

– O(rm2k log2 n) from O(rmn log n)

– space complexity :

– O(rn2k log n) from O(rn2)

[Kumar et al., 2015]



empirical evaluation — running time 0
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(d) DBLP

Fig. 4. Time needed to process 1 000 edges for di↵erent `
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Fig. 5. Running times for DBLP with parallelized version of the algorithm.

8 Concluding remarks

We studied the problem of maintaining the neighborhood profile of the nodes
of an interaction network—a graph with a sequence of interactions, in the form
of a stream of time-stamped edges. The model is appropriate for many modern
graph datasets, like social networks where interaction between users is one of the
most important aspects. We focused on the sliding-window data-stream model,
which allows to forget past interactions and adapt to new drifts in the data.
Thus, the proposed problem and approach can be applied to monitoring large
networks with fast-evolving interactions, and used to reason how the network
structure and the centrality of the important nodes change over time.

contrast (DBLP)

– offline HyperANF : 3.6 sec / sliding window

– proposed approach : 0.003 sec / sliding window

[Kumar et al., 2015]



time-series analysis

• view a temporal network as a multivariate time series

• calculate distance between adjacent snapshots and
analyze the resulting time series

• distance: edit distance, node-profile distances,
vector-space distance

• applications in change-point detection, anomaly detection,
evolutionary pattern mining



event detection in time series
• given a sequence of graphs Gt

• a function to calculate the vertex affinity matrix S, where
sij indicates the influence vertex i has on vertex j
• a set of time points for detected events is
{t ∈ T | d(Gt ,Gt+1) ≥ δ}
where
d(Gt ,Gt+1) =

√∑n
i=1

∑n
j=1(

√
St ,ij −

√
St+1,ij)2

[Eswaran et al., 2018]



time-series analysis

• anomaly detection survey [Ranshous et al., 2015]

• approach does not solve all the problems, as it does not
capture the network topology
• possible work-around: use more topology embeddings

metrics (larger neighborhoods, influence measures,
eigenvectors,. . . )



labeled graphs

• edges are labeled with occurrence timestamps

• applications of classic graph-theoretical problems

– coloring, routing, network flow, covering, etc.

• “any property of a graph labeled from a discrete set of
labels corresponds to some temporal property if
interpreted appropriately” [Michail, 2016]



labeled graphs

• for example, consider a proper edge coloring

– a coloring of the edges in which no two adjacent edges
– share a common color

• corresponds to a temporal network where no two adjacent
edges share a common time-label

– i.e., no two adjacent edges ever appear at the same
– time

• limitation: labels are independent, timestamps are not



theoretical aspects of temporal graphs

• how is the complexity of classic combinatorial optimization
problems changes when time is added?

• some old results: the max-flow min-cut theorem holds with
unit capacities for time-respecting paths [Berman, 1996]

• a number of recent attempts

– sliding window vertex cover [Akrida et al., 2018]

– sliding window graph coloring [Mertzios et al., 2018]

– maximal matching [Mertzios et al., 2019]

– etc.



theoretical aspects of temporal graphs

• there are many models for abstracting temporal networks

• challenge: which models are most general and most
useful?
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data mining problems



data mining problems

• community detection
• event detection
• finding important nodes
• epidemics analysis and influence spreading
• network summarization
• ...



community detection



community detection in static graphs

• static graphs: extensive survey [Fortunato and Hric, 2016]

• standard community definitions

– a community is a set of nodes, which are closer to
– each other than to the rest of the network

– a community is a dense network subgraph

• general definition [Coscia et al., 2011]

– a community in a complex network is a set of entities
– that share some closely correlated sets of actions with
– the other entities of the community

• typical problem settings

– a single community vs. network partition

– overlapping vs. non-overlapping communities



community detection in static graphs
partition measures
• modularity : the difference between the actual number of

edges and the expected
• cut : number of edges between a community and the rest

of the graph
• ratio cut : cut normalized by the number of edges of

community nodes
• ...

single-community measures
• average degree : |E(S)|

2|S|

• density : 2|E(S)|
|S|(|S|−1)

• conductance : cut(S,S̄)

min{vol(S),vol(S̄)}
• ...



community detection in temporal networks

temporal information gives rise to several issues

• temporal localization: concise time interval or intervals,
whole time history

• behaviour: single-appearance, recurring, persistent,
evolutionary patterns, smoothness

• partition of the topology network vs. partition of the time
history

• online vs. offline

• application-specific settings



community detection in temporal networks

• proposed taxonomies

– [Aynaud et al., 2013]

– [Aggarwal and Subbian, 2014]

– [Enugala et al., 2015]

– [Renaud and Naoki, 2016]

– [Hartmann et al., 2016]

– [Rossetti and Cazabet, 2018]

– [Dakiche et al., 2019]

– ...



temporal communities : temporal assumptions

prior model, which describes what is the temporal behavior of
interesting community structures, e.g.,

• small/large covering intervals of community interactions

• frequent patterns

• persistent patterns



evolutionary patterns : vocabulary

evolutionary patterns of communities in the network
[Dakiche et al., 2019]

• birth
• death
• growth
• contraction
• merge
• split
• continue
• resurgence



temporal communities: taxonomy

we follow a recent survey on community detection

[Dakiche et al., 2019]

• independent community detection and matching

– first detect communities at each timestamp

– then match them across different timestamps



independent community detection and matching

[Dakiche et al., 2019]



independent community detection and matching

[Dakiche et al., 2019]



typical evolutionary patterns

[Sun et al., 2015]



procedure

[Sun et al., 2015]



possible issues

• most of approaches investigate the similarity between
communities at consecutive time stamps ti and ti+1

• such an approach may yield a community that does not
share any nodes with the initially-observed community

• need to capture temporal relationship

[Tajeuna et al., 2015, Tajeuna et al., 2016]



possible issues

[Tajeuna et al., 2015, Tajeuna et al., 2016]



similarity matrix
• B = AT × A : temporal community similarity matrix

(contingency matrix)
• row-normalized : transition matrix, similarity threshold

applied
• similarity matrix can be used to track evolution

[Tajeuna et al., 2016, Tajeuna et al., 2015]



independent community detection and matching

advantages
• reuses unmodified traditional community detection

methods
• possible to use existing similarity measures

disadvantages
• instability of community-detection algorithms



temporal communities: taxonomy

[Dakiche et al., 2019]

• dependent community detection

detect communities at time t based on

– network topology at t , and

– communities at time t − 1



dependent community detection

[Dakiche et al., 2019]



dependent community detection

[Dakiche et al., 2019]



Louvain algorithm

• a fast greedy approach based on modularity optimization

• two phases repeated iteratively

– initially, each node in network is a community

– then, for each node i , consider its neighbor j and
– compute the gain of modularity of putting i into the
– community of j

– node i is placed into the community with the largest
– gain, if the gain is positive

[Blondel et al., 2008]



Louvain algorithm

• on the second phase, each community is considered as a
super-node

– the edges between these super-nodes are contracted
– and re-weighed by the number of edges between them

• the two phases are repeated until there is no improvement
in modularity

• the algorithm is extremely fast

[Blondel et al., 2008]



history-dependent approach

idea

• for two consecutive time steps, there only few edges that
affect the community structure

• if the connections of all the nodes in the same community
at time step t − 1 keep unchanged at time step t , they are
still in the same community at time step t

• thus, no need to break that super-node

[He and Chen, 2015]



history-dependent approach

• find all communities in snapshot t = 1
• for t = 2:

– if a node’s connection change, then remove it from its
– super-node and add as single node

– leave all other nodes inside the super-node

– re-weight the edges

[He and Chen, 2015]



history-dependent approach

• continue Louvain from that point to find communities
• continue in this fashion for t = 3 using the communities

at t = 2, and so on

[He and Chen, 2015]



dependent community detection

advantages
• a solution for the problem of instability
• improved computational complexity

disadvantages
• traditional community detection methods are no longer

directly applicable



temporal communities: taxonomy

[Dakiche et al., 2019]

simultaneous community detection on all snapshots

• construct a static expansion graph

– add edges between instances of nodes in different
– timestamps

• run a standard community detection on the resulting graph



simultaneous community detection on all
snapshots

[Dakiche et al., 2019]



simultaneous community detection on all
snapshots

[Dakiche et al., 2019]



simultaneous community detection

• algorithm based on some basic assumptions about
individual behavior and group membership

assumptions

• gradual changes : nodes change community affiliation
infrequently

• reliable true positive : members of the same community
mostly interact with each other

• negligible false positive : members of different communities
rarely interact with each other

[Tantipathananandh and Berger-Wolf, 2011]



simultaneous community detection

costs
• switching cost : each node u incurs cost Csw when

changing community affiliation
• false negative cost : two nodes incur cost Cfn when belong

to the same community but do not interact
• false positive cost : two nodes incur cost Cfp when belong

to different communities but do interact

resulting problem

• find a partition into clusters that minimizes the total cost of
switching, false negative, and false positive

[Tantipathananandh and Berger-Wolf, 2011]



simultaneous community detection

(Csw ,Cfn,Cfp) = (5,1,5) vs. (Csw ,Cfn,Cfp) = (1,1,5)

[Tantipathananandh and Berger-Wolf, 2011]



simultaneous community detection on all
snapshots

advantages
• provides a solution for the problem of instability

disadvantages
• no possibility to track community evolution in a network

evolving in real time



temporal communities: taxonomy

[Dakiche et al., 2019]

dynamic community detection

• update previously discovered communities according to
network modifications



dynamic community detection

[Dakiche et al., 2019]



dynamic community detection

[Dakiche et al., 2019]



TILES

• stream processing
• uses label propagation to diffuse the changes to the node

surroundings and adjust neighbors’ community
memberships
• a node can belong to a community with two different levels

of involvement: peripheral membership and core
membership
• only core nodes can spread community membership to

their neighbors
• edges have a life span threshold, old are removed
• finds overlapping communities, i.e., each node can belong

to different communities which can represent the different
spheres of the social world of an individual

[Rossetti et al., 2017]



TILES

[Rossetti et al., 2017]



TILES

• example of community life cycle extracted from WEIBO

• each community is represented by a circle and identified
by an ID

• events of different types

– (B) birth, (M) merge, (A) absorption, (A) split, (D) death

[Rossetti et al., 2017]



dynamic community detection

advantages
• provides a solution for the problem of instability
• light-weight methods to track communities

disadvantages
• possibility to drift towards invalid communities



event detection



event detection

• given a network representing some kind of activity

– network of social interactions

– social-media feed

– transportation network
• an event can be generally defined as an activity with some

prominent qualitative or quantitative difference from the
background activity

– bursting news about major natural disasters

– abnormally high traffic in the city

– an emerging new discussion topic in social media



applications

• news spread in social media faster than in traditional news
media [Sakaki et al., 2010, Dou et al., 2012]

• weather or traffic condition warning systems

• early notification about influential social events

• understanding causal relations, semantics, and dynamics
of what is happening

comprehensive survey on event detection in dynamic networks
[Ranshous et al., 2015]



temporal event detection

• identify atypical time intervals and/or time instances
• temporal records

– time sequences (time-ordered records) or

– time series (equally-spaced in time sequences)

• number of interactions, tweets, reposts, purchases,
check-ins, or some other measures in absolute values or
aggregated per time unit



temporal event detection

• time series may represent a temporal network

– topological characteristics of each snapshot

– distance between two consecutive graph snapshots



temporal event detection: standard approaches

abnormality score
• the likelihood that an interval contains an event can be

estimated by comparing an abnormality score on the
interval
[Heins and Stern, 2014]

predictive models
• learn a predictive model and find intervals and time points

whose behavior differ from the predicted one
[Hunter and McIntosh, 1999, Gensler and Sick, 2017]



Netsimile

• an event exists in Gj+1, if Gj+1 is very different than Gj

• for each node calculate 7 local and egonet-based
measures

– degree

– clustering coefficient

– average degree of neighbours

– average clustering coefficient of neighbours

– number of edges in the egonet

– number of edges outgoing from the egonet

– number of neighbours of the egonet
• combine into a signature vector and compare

[Berlingerio et al., 2012]



Netsimile algorithm

[Berlingerio et al., 2012]



bursting events

• an influential work by Kleinberg observed that events are
characterized by bursting activity

[Kleinberg, 2003]

– e.g., people discuss a topic intensively during the short
– period of time

• recent works rely on this connection

[Abdelhaq et al., 2013, Kunneman and van den Bosch, 2014]



hierarchical events

• time intervals of the events
• events are not isolated

• they have different importance

– local and global events can happen simultaneously

– a large event amy consist of several smaller events

• thus, hierarchical event models are meaningful

[Dong et al., 2015, Li et al., 2014]



temporal event detection

we want to detect
• additional structural features, e.g.,

– periodicity [Kunneman and Van den Bosch, 2015]

– meta-information, e.g., text or tags of messages

most practical event-detection tools
• are application specific

– breaking news or trends on twitter

– [Batal et al., 2012, Aggarwal and Subbian, 2012]

– use multiple time sequence analysis techniques
– as building blocks

– [Rayana and Akoglu, 2016]



spatiotemporal event detection

detailed survey [Shi and Pun-Cheng, 2019]

• consider time and the (geo-)location of an event
• sources of spatial data

– GPS devices / smart phones

– geo-tagged messages in online social networks
• typical approaches model the data as a set of

geo-locations associated with activity measurements
• given a set of locations with activity measures, we want to

find a subset of locations that are close to each other and
have abnormal activity pattern
• in spatiotemporal setting, one is also interested in finding

the time interval (moment) of an event



spatiotemporal event detection: scan statistics

• a classic family of methods is spatial and spatiotemporal
scan statistics

• scan over the space and time windows to identify regions
of data generated by a non-random process



spatiotemporal event detection: scan statistics

• a seminal paper : spatial scan statistics [Kulldorff, 1997]

• scan a circular spatial window and test the
non-randomness of data against Poisson or Bernoulli
baseline process

[Takahashi et al., 2004]



spatiotemporal event detection: scan statistics

• later the approach was extended to spatiotemporal scans
with cylindric windows
• similar works explore other types of statistics and tests

[Neill, 2006, Qian et al., 2014].

[Takahashi et al., 2004]



flexible scans

• flexible spatial scan-statistics
• first, divide the entire area into many small regions

– the location of each region is the administrative
– population centroid

• next, the set of irregularly shaped windows: concentric
circles and connected regions

– k is a pre-specified maximum length of cluster
• similar idea is used in the flexible space-time scan statistics
• both of these are fitted to a small cluster size

[Takahashi et al., 2008]



flexible scans

simulated disease maps in the Tokyo Metropolitan area

[Takahashi et al., 2008]



structural event

• structural event

– set of interconnected abnormal nodes

– no assumptions on geo-desic distances
• e.g., the edge weights represent similarity of nodes

– similarities between twitter users in preferences,
– language, frequently visited locations, etc.

• scan extension to graph model [Liu et al., 2016b]

• scan through a graph neighborhood — a set of
interconnected nodes
• dense subgraph detection

– e.g., [Charikar, 2000, Khuller and Saha, 2009]



semantic event detection
• define event as an emerging/bursting/unusual topic in

social media, or
• use textual information to supplement and support event

detection

– meaning of the event

– more robust event detection
• simplest use of textual information monitor the frequencies

of separate key words [Lappas et al., 2012]

• efficient for predefined events, vocabulary is known
• more general approach: topic modeling to identify the

event vocabulary
• combine with other event-related information

– e.g., the geo-tags of tweets

[Hong et al., 2012, Kling et al., 2014]



ETree

• aggregate semantically similar (based on n-grams) tweets
into information blocks

• model an event in twitter as a tree of information hierarchy,
where nodes are subtopics

• each subtopic is a directed graph of information blocks,
where edges are potential causal relationships

• the causal estimates rely on content similarity and
temporal relevance

• assemble a topic tree by greedy heuristic

[Gu et al., 2011]



ETree

[Gu et al., 2011]



finding important nodes



PageRank

• classic approach for measuring node importance

• listed in the top-10 most important data-mining algorithms

[Wu et al., 2008]

• numerous applications

– ranking web pages

– trust and distrust computation

– finding experts in social networks

– . . .



PageRank

• PageRank defined as the stationary distribution of

a random walk in the graph

• inherently a static process

• however, many modern networks can be viewed as

a sequence (stream) of edges

– temporal network : G = (V ,E), with E = {(u, v , t)}
– examples : twitter, instagram, IMs, email, . . .

• what is an appropriate PageRank definition for

temporal networks?



temporal networks

network nodes interact with each other

(e.g., a “like”, a repost, or sending a message to each other)

time

x
y

z
w

u



motivating example
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Fig. 1: (a) A static graph, in which hubs a and e have the highest static PageRank
score; (b) and (c) represent two di↵erent temporal networks: in (b) the temporal
PageRank score of nodes a and e are expected to be stable over time; in (c)
node e becomes more important than a as the time goes by, and the temporal
PageRank scores of a and e are expected to change accordingly.

and it has inspired a family of fixed-point computation algorithms, such as,
TopicRank [6], TrustRank [8], SimRank [11], and more.

PageRank is defined to be the steady-state distribution of a random walk.
As such, it is implied that the underlying network structure is fixed and does
not change over time. Even though numerous works have studied the problem of
computing PageRank on dynamic graphs, the emphasis has been given on main-
taining PageRank e�ciently under network updates [12, 19], or on computing
PageRank e�ciently in streaming settings [22]. Instead there has not been much
work on how to incorporate temporal information and network dynamicity in
the PageRank definition.

To make the previous claim more clear imagine that starting from an initial
network G we observe k elementary updates in the network structure e

1

, . . . , ek

(such as edge additions or deletions), resulting on a modified network G

0. A
typical question is how to compute the PageRank of G0 e�ciently, possibly by
taking into consideration the PageRank of G, and the incremental updates. Nev-
ertheless, the PageRank of G0 is defined as a steady-state distribution and as
the network G

0 would “freeze” at that time instance.
Our goal in this paper is to extend PageRank so as to incorporate temporal

information and network dynamics in the definition of node importance. The
proposed measure, called temporal PageRank, is designed to provide estimates
of the importance of a node u at any given time t. If the network dynamics and
the importance of nodes change over time, so does temporal PageRank, and it
duly adapts to reflect these changes.

An example illustrating the concept of temporal PageRank, and presenting
the main di↵erence with classic PageRank, is shown in Figure 1. First, a static
(directed) graph is shown in Figure 1(a). Vertices a and e are the hubs of the
graph, and thus, the nodes with the highest static PageRank score. Figures 1(b)

static network temporal network temporal network



research questions and objectives

• extend PageRank to incorporate temporal information

and network dynamics

• adapt PageRank to reflect changes in network dynamics

and node importance

• estimate importance of a node u at any given time t

[Rozenshtein and Gionis, 2016]



dynamic PageRank vs. temporal PageRank

• extensive work on dynamic PageRank

• dynamic PageRank computation :

– maintain correct PageRank during network updates

– e.g., edge additions / deletions

• computation should return the static PageRank at a

given network snapshot

• for edges present in a snapshot, order does not matter

[Rozenshtein and Gionis, 2016]



static PageRank

• graph G = (V ,E)

• corresponding row-stochastic matrix P ∈ Rn×n

• personalization vector h ∈ Rn

• PageRank is the stationary distribution of a random walk,

with restart probability (1− α)

π(u) =
∑

v∈V

∞∑

k=0

(1− α)αk
∑

z∈Z(v ,u)
|z|=k

h(v)Pr[z | v ]

where, Z(v ,u) is the set of all paths from v to u

and Pr[z | v ] = ∏
(i,j)∈z P(i , j)



temporal PageRank

• make a random walk only on temporal paths

– e.g., time-respecting paths

– time-stamps increase along the path
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Fig. 1: (a) A static graph, in which hubs a and e have the highest static PageRank
score; (b) and (c) represent two di↵erent temporal networks: in (b) the temporal
PageRank score of nodes a and e are expected to be stable over time; in (c)
node e becomes more important than a as the time goes by, and the temporal
PageRank scores of a and e are expected to change accordingly.

and it has inspired a family of fixed-point computation algorithms, such as,
TopicRank [6], TrustRank [8], SimRank [11], and more.

PageRank is defined to be the steady-state distribution of a random walk.
As such, it is implied that the underlying network structure is fixed and does
not change over time. Even though numerous works have studied the problem of
computing PageRank on dynamic graphs, the emphasis has been given on main-
taining PageRank e�ciently under network updates [12, 19], or on computing
PageRank e�ciently in streaming settings [22]. Instead there has not been much
work on how to incorporate temporal information and network dynamicity in
the PageRank definition.

To make the previous claim more clear imagine that starting from an initial
network G we observe k elementary updates in the network structure e

1

, . . . , ek

(such as edge additions or deletions), resulting on a modified network G

0. A
typical question is how to compute the PageRank of G0 e�ciently, possibly by
taking into consideration the PageRank of G, and the incremental updates. Nev-
ertheless, the PageRank of G0 is defined as a steady-state distribution and as
the network G

0 would “freeze” at that time instance.
Our goal in this paper is to extend PageRank so as to incorporate temporal

information and network dynamics in the definition of node importance. The
proposed measure, called temporal PageRank, is designed to provide estimates
of the importance of a node u at any given time t. If the network dynamics and
the importance of nodes change over time, so does temporal PageRank, and it
duly adapts to reflect these changes.

An example illustrating the concept of temporal PageRank, and presenting
the main di↵erence with classic PageRank, is shown in Figure 1. First, a static
(directed) graph is shown in Figure 1(a). Vertices a and e are the hubs of the
graph, and thus, the nodes with the highest static PageRank score. Figures 1(b)

c → b → a→ c : time respecting

a→ c → b → a : not time respecting



temporal PageRank

• intuition : probability of visiting node u at time t

given a random walk on temporal paths

• need to model probability of following next temporal edge

– we use an exponential distribution

• temporal PageRank definition

r(u, t) =
∑

v∈V

t∑

k=0

(1− α)αk
∑

z∈ZT (v ,u|t)
|z|=k

Pr′[z| t ]

ZT (v ,u | t) set of temporal paths from v to u until time t



computation

• simple online algorithm
• r(u, t) : temporal PageRank estimate of u at time t
• s(u, t) : count of active walks visiting u at time t

Algorithm 2: stream processing

input : E, transition probability �, jumping probability ↵
1 r = 0, s = 0;
2 foreach (u, v, t) 2 E do
3 r(u) = r(u) + (1 � ↵);
4 r(v) = r(v) + (s(u) + (1 � ↵))↵;
5 s(v) = s(v) + (s(u) + (1 � ↵))(1 � �)↵;
6 s(u) = (s(u) + (1 � ↵))�;

7 normalize r;
8 return r;

3.2 Temporal vs. static PageRank

Temporal PageRank is defined to handle network dynamics and concept drifts.
An intuitive property that one may expect is that if the edge distribution of the
temporal edges remains constant, then temporal PageRank approximates static
PageRank. In this section we show that indeed this is the case.

Consider a weighted directed graph Gs = (V, Es, w) and a time period
T = [1, .., T ]. Without loss of generality assume

P
e2Es

w(e) = 1 and let Nout(u)
be the out-link neighbors of u. Let edges e 2 Es be associated with a sampling
distribution SE : p[e = (u, v)] = w(e). A temporal graph G = (V, E) is con-
structed by sampling T edges from Gs using SE (probability to pick an edge
into E is proportional to the weight of this edge in the static graph). We will
consider a simple case of transition probability � = 1: a random walk takes the
first suitable interaction to continue.

In the setting described above we can prove the following statement.

Proposition 2. The expected values of temporal PageRank on graph G = (V, E)
converge to the values of static PageRank on graph Gs = (V, Es, w), with per-
sonalization vector h(u) =

P
v2Nout(u) w(e = (u, v)) (weighted out-degree).

Proof. At any time moment t every vertex u 2 V has PageRank score r(u, t)
and active mass (number of walkers that wait to continue) equal to s(u, t).

The expected value E(r(v, T )) of the PageRank count of node v at time T is
a sum over expected increments of r(v) over time:

E(r(v, T )) =
TX

t=1

E(�r(v, t)).

At time t the increment of r(v) can be caused by selecting an edge e(t) =
(v, q) with starting point in v and q 2 V . In this case r(v) is incremented by
(1 � ↵). Another possibility to increment r(v) is to select an edge e(t) = (q, v)
with u as an end point and q 2 V . In this case r(v) is incremented by ↵s(q, t),
where s(q, t) is a value of active mass in node q at time t. Let p(u) be a probability



static vs. temporal PageRank

• temporal PageRank is designed to capture changes

in network dynamics and concept drifts

• what if the edge distribution is stable?



static vs. temporal PageRank

• consider static network GS = (V ,ES,w)

• time period [1, . . . ,T ]

• construct temporal network G = (V ,E) by sampling edges

proportionally to their weight

proposition :

as T →∞, the temporal PageRank on G

converges to the static PageRank on GS,

with personalization vector equal to weighted out-degree

[Rozenshtein and Gionis, 2016]



experiment — adaptation to concept drift

(a) Facebook (b) Twitter (c) Students

Fig. 5: Adaptation for the change of sampling distribution.

(a) Facebook (b) Twitter (c) Students

Fig. 6: Convergence to static PageRank with increasing number of random scans
of edges.

Measures. To evaluate the settings in which temporal PageRank is expected to
converge to the static PageRank of a corresponding graph, we compare temporal
and static PageRank using three di↵erent measures: we use (i) Spearman’s ⇢ to
compare the induced rankings, we also use (ii) Pearson’s correlation coe�cient r,
and (iii) Euclidean distance ✏ on the PageRank vectors.

All the reported experimental results are averaged over 100 runs. Damping
parameter is set of ↵ = 0.85. Waiting probability � for temporal PageRank is
set to 0 unless specified otherwise.

4.1 Results

Convergence. In the first set of experiments we test how fast the tempo-
ral PageRank algorithm converges to corresponding static PageRank. In this
setting we process datasets with m temporal edges and compare the tempo-
ral PageRank ranking with the corresponding static PageRank ranking. In the
plots of Figure 2 we report Pearson’s r, Spearman’s ⇢ and Euclidean error ✏.
The first column corresponds to the calculation of temporal PageRank without
any a priori knowledge of personalization vector. Thus, the resulting temporal
PageRank corresponds to the static PageRank with out-degree personalization:

[Rozenshtein and Gionis, 2016]



diffusion analysis and influence spreading



diffusion analysis and influence spreading

• propagation models

– used to study disease spreading or information
– cascade in the network

• activity spreading: virus, information, idea, rumor
• applications: epidemiology, information security, marketing

• why use models?

– facilitate mathematical analysis of propagation
– processes

– have intuitive interpretation

– proven to be realistic by empirical studies
• extensive survey in the book [Shakarian et al., 2015]



standard models

• susceptible-infected (SI) model

– SIR, SIRS, other variants
• independent cascade (IC) model
• iinear threshold (LT) model
• shortest path (SP) model



static models: assumptions

• all models have similar implicit assumptions on temporality:

1. uniform time steps

2. interactions happen at each time step and are independent



drawbacks of static models

• large heterogeneity in the time instances of real
interactions

[Barabasi, 2005, Candia et al., 2008,
Leskovec and Horvitz, 2008]

• burstiness in communication patterns
• periodic activity changes
• causal relationships between interactions



temporal propagation models

• intuitive extensions from static graphs to temporal graphs
• add distributions (e.g., Poisson or power-law) of the

intervals between interactions (latencies)

[Vazquez et al., 2007, Min et al., 2011]

• realistic generalizations of well-studied models

[Karsai et al., 2011, Candia et al., 2008]

• continuous time, partially observed graph
• develop mathematical analysis for novel and generalized

models

[Harris, 2002, Fernández-Gracia et al., 2011]



typical problem formulations

• immunization strategies

• influence maximization

• seed and cascade reconstruction



static immunization strategies

• main aspects differentiating the research works:

– assumptions about the spreading model

– assumptions about the network structure

– whether the whole network is observable

• both assumptions on the network structure and on the
infection propagation are crucial
• results may not hold for any general network and real

infection

[Newman, 2003, Pastor-Satorras and Vespignani, 2002a].



static immunization strategies

• simple model-blind strategies, such as random
immunization, perform moderately well in different
scenarios

[Pastor-Satorras and Vespignani, 2002b, Madar et al., 2004]

• better results on real-world networks can be achieved by
immunizing nodes with high connectivity

[Pastor-Satorras and Vespignani, 2002b,
Dezső and Barabási, 2002].

• requires explicit knowledge of the network structure and it
is impractical for real applications



static immunization strategies

• [Cohen et al., 2003] overcomes this drawback by employing
acquaintance immunization strategy:

• immunization of random neighbors of randomly selected
nodes leads to immunization of the most central nodes
without knowing any global information about the network



temporal immunization strategies

• adjust successful static strategies
• e.g., Cohen’s neighborhood vaccination scheme

[Lee et al., 2012]

• two vaccination strategies
• recent :

– ask a random individual i to name its most recent
– contact and vaccinate this person

• weight :

– ask a random individual i to name its most frequent
– contact since some time t



2 protocols

[Lee et al., 2012]



temporal immunization strategies

recent is the most efficient method for the most of the datasets
[Lee et al., 2012]



temporal immunization strategies

• full knowledge of the temporal graph:

– vaccinations of nodes with high temporal degree,
– temporal betweenness, or other type of centrality

– [Yu et al., 2010, Starnini et al., 2013, Génois et al., 2015]

• another line of works
• find persistent communication patterns to approximate the

communication structure in future

– apply standard vaccination on the predicted graph

– [Valdano et al., 2015, Gauvin et al., 2015]
– [Mantzaris and Higham, 2016]



static influence maximization

• how to select theinitial set of infected nodes (seeds), such
that the speed, size, or other spread characteristics are
optimized
• applications in marketing and network design

• influence maximization problem was introduced by
[Kempe et al., 2003] in the IC and LT models
• find a set of k seed nodes, such that the expected number

of nodes activated by the infection cascade is maximized



static influence maximization

• NP-hard [Kempe et al., 2003]

• simple greedy algorithm with approximation guarantee

• influence maximization problem was been studied for
many different variants of other models, constraints, and
objective functions

• many practical heuristics and approximations

[Chen et al., 2009, Chen et al., 2010, Tang et al., 2014]



temporal influence maximization

• intuitive approach to reflect temporality:

– sequence of graphs (or snapshots)

– each time step of propagation corresponds to
– propagation over the corresponding graph

– all interactions within one time step happen
– simultaneously

• related papers:

[Aggarwal et al., 2012, Zhuang et al., 2013,
Gayraud et al., 2015]



temporal influence maximization

• another approach:
• incorporate time into the diffusion model as distribution of

intervals between the interactions
• different types of models and interval distributions

[Chen et al., 2012, Liu et al., 2012,
Rodriguez and Schölkopf, 2012, Du et al., 2013]

• the most realistic approachable setting?
• the latest promising research:

– infer propagation model parameters from the data

– [Rodriguez et al., 2011, Gomez-Rodriguez et al., 2016]



influence maximization in the continuous model
• use fully continuous time model of diffusion

[Rodriguez et al., 2011]

• pairwise transmission likelihood:
• define f (tj | ti ;αi,j) as the conditional likelihood of

transmission between a node i and a node j ,

– ti and tj are infection times and

– αi,j is the transmission rate

• assume that the likelihood depends on:

– the pairwise transmission rate αi,j and

– the time difference (tj − ti)

• consider the exponential distribution of model pairwise
interactions

[Gomez-Rodriguez et al., 2016]



influence maximization in the continuous model

• given a diffusion process that started in the set of source
nodes A
• N(A;T ) is the number of nodes infected up to time T
• the influence function σ(A;T ) as the average total number

of nodes infected up to time T , i.e., σ(A;T ) = EN(A;T ).
• continuous time influence maximization problem:

– find the set of source nodes A in a diffusion network G
– that maximizes the influence function σ(A;T )

• i.e., A = argmax|A|≤k σ(A;T )

[Gomez-Rodriguez et al., 2016]



influence maximization in the continuous model

• efficient pruning based on identifying ‘blocked’ nodes
• infection time of a node is the length of the stochastic

shortest path

[Gomez-Rodriguez et al., 2016]



seed and cascade reconstruction

• given someobserved data about the infection

– e.g., a small subset of infected nodes,

the goal is to find the most probable seed nodes

• other versions:

– find the most probable cascades
• the order of infection (who got infected from whom)
• these works are data-driven:

– it is essential that the assumed propagation model
– matches the actual infection flow in the network



seed and cascade reconstruction

• applications:

– epidemiology (who was the patient zero?)

– influencer discovery
– (who was the source of information?)

• a number of different approaches

– find a single source under the SI model
– [Shah and Zaman, 2011]

– multiple seeds [Prakash et al., 2012]

– k seeds under the IC model [Lappas et al., 2010]

• the most recent papers

– take advantage of the recorded infection order
– [Sefer and Kingsford, 2016].



temporal reconstruction

• the problems formulated in this setting tend to be either

– oversimplified versions of static reconstruction or

– become too hard or ill-posed

• knowing the history of interactions allow to reconstruct
feasible paths of infection and prune unfeasible

• any noise or missing information adds uncertainty

• need more assumptions about the noise and information
available



temporal reconstruction

• some problem formulations :
• reconstruct the cascade given the sequence of graph

snapshots along with node-status information

[Feizi et al., 2016, Sefer and Kingsford, 2016]

• reconstruct an SI cascade from one sampled snapshot
with all information

[Sundareisan et al., 2015]

• while there are methods to handle partially observed
cascade for static graphs, in temporal graphs most of
works rely on noise-free data

• the knowledge of the diffusion model in crucial

• see survey paper: [Holme, 2015]



history reconstruction

[Sefer and Kingsford, 2016]

• SEIRS diffusion dynamics over directed graph G = (V ,E)

• SEIRS states are Susceptible (S), Exposed but not
contagious (E), Infected and contagious (I), and previously
infected but Recovered (or immune to the infection) (R)

• given: a graph G = (V ,E), state transition probabilities
(pu,v ,e2iv , i2sv , i2r v , r2sv ), and a collection of diffusion
snapshots = {Dt}, with Dt ∈ TD

• each snapshot records the state of every node at a single
time point, partitioning them into V = St ∪ Et ∪ It ∪ Rt

• the goal is to infer the past states (susceptible, exposed,
infected and recovered) of every node at every time



history reconstruction

[Sefer and Kingsford, 2016]



history reconstruction
[Sefer and Kingsford, 2016]

• proposed solution :

– maximum likelihood history given diffusion snapshots
– that may come from multiple time points

• algorithm called DHR-sub (submodular history
reconstruction on discrete dynamics)
• reconstructs the history before the earliest measurement:

– greedily maximize the non-monotone submodular
– log-likelihood at each previous time step

• reconstructs the history between the consecutive diffusion
data time points:

– non-monotone submodular maximization under
– matroid base constraints

• speedups and approximations
[Sefer and Kingsford, 2016]



history reconstruction

[Sefer and Kingsford, 2016]



network summarization



network summarization

• aims to simplify and explain the high-level structure of
complex real graphs

• many different problem formulations and techniques:

– recent survey [Liu et al., 2016a]



motivation and applications

• fast and interactive large-graph analysis:

– summaries decrease space and memory required for
– the storage and processing of real-world networks

• clear human understandable visualization

• noise elimination: filter out insignificant structural
fluctuations in networks and preserve only prominent
patterns



approaches to summarization

• sparsification

• aggregation / compression

• non-graph summary



sparsification

• remove somewhat unimportant edges or/and nodes

• preserving certain local or/and global structures

• important properties to preserve are cuts, community
structures, distances, spectral properties, etc.



[Hamann et al., 2016]



sparsification
• sparsification problems are often formulated as

optimization problems:

– minimize some kind of graph approximation
– (reconstruction) error

– while sparsifying as much as possible

• examples:

– preservation of distances between nodes and
– connectivity
– [Elkin and Peleg, 2005, Zhou et al., 2010]

– cuts [Ahn et al., 2012]

– spectral graph properties [Batson et al., 2013]

– various types of social network-specific characteristics

• survey: [Hamann et al., 2016]



comparison

• random edge (RE)
• triangle counts (Tri)
• Jaccard similarity (JS) [Satuluri et al., 2011]

• simmelian backbones (TS, QLS) [Nick et al., 2013]

• edge forest fire (EFF) [Leskovec and Faloutsos, 2006]

• algebraic distance (AD) [Chen and Safro, 2011]

• local degree (LD) [Hamann et al., 2016]

• “local” versions of all mentioned methods
[Hamann et al., 2016]

[Hamann et al., 2016]



comparison



comparison
• random edge deletion:

– performs surprisingly well
– retains a wide range of properties

• simmelian backbones, Jaccard similarity and algebraic
distance:

– prefer intra-cluster edges
– do not keep global structures

• local degree:
– preserves shortest paths
– overall connectivity of the network

• forest fire sampling edge scoring:
– depends strongly on the specific network’s structure
– good at preserving connectivity

[Hamann et al., 2016]



aggregation / compression

• super graph:

– nodes are grouped into supernodes and

– edges between the super nodes form superedges

• graph aggregation can be formulated as an optimization
problem

– minimizing reconstruction error

– preserve some properties
• the preserved properties are similar to sparsification

problems



aggregation / compression

• some examples:

– node aggregation to approximatenode degree and
– eigenvector centrality
– [LeFevre and Terzi, 2010, Riondato et al., 2017]

– edge aggregation to preserve the weights of
– superedges or strengths of the paths
– [Toivonen et al., 2011]

• common heuristic is to build a supergraph based on
clustering

[Abello et al., 2006, Clémençon et al., 2012]



compression example

– graph G = (V ,E)

– number k
– AG : adjacency matrix of G

• k -summary S of G is a complete undirected weighted
graph S = (V ′,V ′ × V ′)

• where V ′ is a disjoint k -partition of V

[Riondato et al., 2017]



compression example

• the vertices of S are called supernodes, edges are
superedges
• each superedge eij has a weight, corresponding to the

density of edges between Vi and Vj :

– dG(i , j) =
∑

i′∈Vi ,j
′∈Vj

AG(i ′,j ′)

|Vi ||Vj |

[Riondato et al., 2017]



[Riondato et al., 2017]

• density matrix of S as the k × k matrix AS with entries
AS(i , j) = dG(i , j), 1 ≤ i , j ≤ k

• AS ∈ Rk × k can be lifted to the matrix A↑ ∈ S ∈ Rn × n as
A↑S(v ,w) = AS(s(v), s(w))

• summarization problem: find the k -summary to minimize
the error err(AG,A

↑
S) = ||AG − A↑S||p

[Riondato et al., 2017]



non-graph summary

• represent some interesting, characterizing, or otherwise
important structures observed in the graph

– e.g. a set of tightly interconnected nodes
– (communities)

– graph can be summarized as a set of communities,
– ignoring other parts
– [Lancichinetti et al., 2011, Perozzi and Akoglu, 2018]



non-graph summary

• other examples:

– motif counting
– (counting small subgraphs of restricted size)
– [Itzhack et al., 2007]

– finding frequent subgraphs
– [Jiang et al., 2013]

• other approaches develop specialized vocabulary to
encode a large graph.
• e.g., summarize by a set of chains, stars, cliques, and

bipartite cores
[Koutra et al., 2015]

• this framework can be further extended to domain-specific
vocabulary constructed by an expert



vocabulary-based summarization

• vocabulary: full and near cliques (fc, nc), full and near
bipartite cores (fb, nb), stars (st), and chains (ch)
• encode the graph using MDL-base encoding:

– graph = vocabulary + noise

• more approaches in the survey [Liu et al., 2016a]

[Koutra et al., 2015]



temporal graph summarization

• time-related changes are important:

– summarized patterns and substructures may not be
– persistent in time

– the elements of a pattern can be frequent in different
– distant time periods and not frequent in a
– continuous time interval

• purely temporal patterns may occur:

– substructures may change in time according to
– hidden rules

– e.g., nodes with certain labels may gain centrality over
– time, while the importance of some other labels may
– decline



adaptation of existing techniques

• frequent subgraph mining: find persistent graph patterns
over a collection of snapshots
• do not take into account how the instances of the same

subgraph are located in time

• sequential pattern mining: search for time-ordered patterns
in the sequence of snapshots
• network evolutionary patterns

[Berlingerio et al., 2009, Wackersreuther et al., 2010]

• ignores structural patters

• time-series analysis: gather node- and
structure-dependent statistics over time
• apply segmentation techniques [Ye and Keogh, 2009]

• does not consider network structure



temporal techniques

• summarization of both structural and temporal aspects

• how to define a summary?
• many possible options:

– a summary can be a short temporal sequence of
– small graphs,

– a concise presentation of evolutionary patterns,

– a representative collection of temporally and
– topologically frequent patterns

• one common approach to summary definition:
• summary should consist of

– small structurally “interesting” subgraphs

– with non-trivial temporal behavior



frequent and persistent temporal subgraphs
• definition of temporal subgraphs?

– undirected or directed subgraphs aggregated with or
– without frequency edge-weight over short intervals

– directed acyclic graphs, as they model information
– flow in the graph

• temporal order of interactions:

– fixed or flexible

• temporal constrains:

– window length and/or delays between two interactions

• how to measure counts, frequencies, and importance of
the subgraphs?
• how to treat the temporal duplicates of the same edges?
• how to weight patterns by the time span and recency?



temporal motifs

• temporal motif counting

[Paranjape et al., 2017, Kovanen et al., 2013]:

– temporal motif is a small subgraph with temporally
– ordered edges (and/or interval or delay constraints)

• some other works explore temporal graphlets

– time constrained causal subgraphs
– [Hulovatyy et al., 2015]
– and cyclic patterns
– [Lahiri and Berger-Wolf, 2008]



temporal motifs

δ-temporal motif: a sequence of directed temporally ordered
edges which appear within a time window δ

[Paranjape et al., 2017]



[Paranjape et al., 2017]



vocabulary-based summarization

• summarize a temporal graph as a set:

– subgraphs of a special “most non-random” shape
– (stars, cliques, bipartite cores, chains), and

– behavioural temporal patterns (flickering, periodic,
– oneshot, ranged, and constant patterns)

• use MDL principle to encode whole temporal network by
the vocabulary plus noise

[Shah et al., 2015]



larger structures
• use larger structures to summarize the network:

– communities
– spanning graphs
– backbones
– cores

• common approach:
– given a sequence of graphs
– (snapshot, or sliding-window aggregation)
– search for communities that are coherent and/or
– persistent in time

• different measures of community quality and temporal
smoothness are used
[Pietilänen and Diot, 2012, He and Chen, 2015]
• the resulting summary is a trade-off between structural

quality and historical consistency



temporal backbones

• G = (G1, . . . ,GF ) time history [1,F ]

• Gi = (V ,E) have weighted edges wi : E → R

• the heaviest temporal subgraph:

• find an interval [i , j] ⊆ [1,F ] and a subgraph
G′ = (E ′,V ′) ⊆ G, that maximizes

– score(G′, i , j) =
∑

e∈E ′
∑j

k=iwi(e)

• NP-hard problem

• scalable heuristics

[Bogdanov et al., 2011]



[Bogdanov et al., 2011]



influence-based summarization
• summarizes the flow of information propagation:

– find influential nodes and information-forwarding
– connections

• OSNet [Qu et al., 2014]:

– processes a temporal network in a streaming fashion

– outputs the subgraphs of influential nodes

– node importance is calculated based on temporal
– spreading trees

• [Lin et al., 2008] identify influential nodes and interactions in
temporal multi-view social networks

– networks with edges between different types of
– entities, e.g., users, photos, and comments

– explain the evolution of topics over time
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part VI

future challenges



temporal community detection: challenges
• large number of problem formulations and variants
• lack fundamental theoretical treatment

– most of the approaches are heuristics
– many are combinations of several ideas and
– algorithms
– require many parameters and attention to
– implementation details

• hard to compare methods and choose one for an
application

– few datasets with ground-truth temporal communities
– synthetic generators are built on various assumptions
– no standards and benchmarks

• a large number of quality metrics to calculate and compare
• may be misleading if a method is not designed for that

particular community definition



temporal community detection: directions

• more systematic approaches, quality guarantees
• interpretability of the results
• visualization

• applications and application-tailored algorithms, e.g., for

– computational social science

– temporal network summarization



event detection: challenges

• actively evolving area, application- and data-oriented
• families of problems and methods are considered only for

the specific sources of data

– e.g., a large body of research is focused on the
– analysis of Twitter data [Atefeh and Khreich, 2015]

• no unified classification for problem settings, research
questions, and data requirements

– recent classifications are based on various aspects:

– event definitions, online or retrospective detection,
– specified or unspecified event detection, etc.
– [Cordeiro and Gama, 2016, Goswami and Kumar, 2016]



event detection: directions

• speed and quality:

• online streaming event-detection techniques are
demanded for nearly real-time event detection

• quality: both false events and missed events may have a
high price

• more use of multi-modal data:

• text: complex semantic and sentiment analysis is rare

• high-resolution interaction patterns: “who talked to whom
about what and what happened then” are also often not
considered



diffusion analysis: challenges

• influence maximization:

– what is the most realistic approachable setting?

– the latest promising research focuses on inferring
– the parameters of a propagation model from the data,
– including latency distributions
– [Rodriguez et al., 2011, Gomez-Rodriguez et al., 2016]

• reconstruction:

– received little attention

– the problems formulated in this setting tend to be
– either oversimplified versions of static reconstruction or
– become too hard or ill-posed

– most of the works rely on noise-free data

– the assumption of diffusion model is crucial



diffusion analysis: open directions

• models:

– temporal diffusion models are proposed, but the
– theoretical properties of many of them are not yet
– well studied

– the applications and limitations are not yet well
– understood

• immunization strategies:

– not extensively studied yet

– most of the approaches are based on heuristics



summarization challenges

• meaningful summary vocabulary
• diversity of summarizing substructures is vast

[Perozzi and Akoglu, 2018, Koutra et al., 2015,
Jiang et al., 2013])
• which summaries are preferable and in which applications?
• summaries useful for a general network exploration by a

non-expert analyst?



summarization challenges

• fast and light-weighted algorithms
• interactive analysis
• have a hierarchical structure, which is possible to browse

– similar to a visual analytic tool OntoVis, which
– constructs some type of graphical summaries
– [Shen et al., 2006]

• multi-level summarizations:
• use all available attributes in the temporal networks

– text, geotags, propagation patterns...
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